On the Fundamental Limit of Distributed Learning With Interchangable Constrained Statistics
In the popular federated learning scenarios, distributed nodes often represent and exchange information through functions or statistics of data, with communicative processes constrained by the dimensionality of transmitted information. This paper investigates the fundamental limits of distributed parameter estimation and model training problems under such constraints. Specifically, we assume that each node can observe a sequence of i.i.d. sampled data and communicate statistics of the observed data with dimensionality constraints.